We primarily focus on deciphering epigenetic mechanisms and transcription factors that wire the gene expression programs underlying neural development. Here we employ highly multidisciplinary approaches combining neurobiology, epigenetics, genomics and computational biology to fill-in the longstanding knowledge gap in the field, in particular to discover which players, mechanisms and principles are crucial in defining specific cell-fates at distinct stages of neural development. We uncovered a role for Topoisomerase 2α in gene regulation underlying pluripotency and developmental potential of embryonic stem cells by regulating the epigenetic state and RNA Pol II kinetics at its target genes. Subsequently, my lab revealed novel distal regulatory elements that function in concert with epigenetic mechanisms and transcription factors to generate the transcriptome underlying neuronal development and activity. My group also revealed how the transcription factor NeuroD1 functions as a pioneer transcription factor by binding its targets within repressive chromatin and inducing an open chromatin state to promote neuronal fate. In addition to revealing critical molecular switches of brain development, these studies also paved the way for translational neurosciences including regenerative therapy. Very recently, we provided the first report that the astrocyte generation involves several transcriptionally and epigenetically distinct stages and revealed transcription factors that play pivotal roles in establishing these stages by remodeling the epigenetic landscape at distal regulatory elements.
As a second branch in my lab, we also study molecular mechanisms underlying epithelial to mesenchymal transition. The epithelial to mesenchymal transition (EMT) is a biological process in which cells lose cell-cell contacts and become motile. EMT is used during development, for example, in triggering neural crest migration, and in cancer metastasis. Despite progress, the dynamics and function of signaling pathways, transcription factors and epigenetic mechanisms driving the transcriptional program underlying EMT remained poorly understood. I contributed to a study that discovered how the transcription Sox4acts as a master regulator of EMT by controlling the expression of Ezh2, encoding the Polycomb group histone methyltransferase, and downstream epigenetic reprogramming. My team identified a role for JNK pathway in breast cancer metastasis by regulating a distinct gene expression program, at the same time revealed epigenetic mechanisms and a new repertoire of transcription factors that mediate these responses. This study also guided for novel therapeutic avenues in breast cancer. Extending these findings, we showed a kinetically different function of ERK pathway during EMT and showed how it modulates epigenome at distal elements to promote this process. Recently, we discovered FBXO32 as a novel critical regulator of EMT by mediating epigenetic remodeling and transcriptional induction of a specific set of genes, which create a suitable microenvironment for EMT progression. Lastly, linking the two branches within my lab, we made several illustrations how cortical development involves an EMT-like process and may involve similar gene regulatory programs and players.
My postdoctoral work was focused on addressing a longstanding challenge of how signaling pathways and transcription factors crosstalk with chromatin during cellular differentiation and how this communication goes wrong in diseases. During my first postdoc, I showed for the first time how different epigenetic mechanisms cooperate to mediate chromatin compaction for silencing tumor suppressor genes in cancer cells. I then invented a novel technique and showed that protein complexes that control epigenetic gene regulation mediate physical proximity between distant chromosomal elements. This study also showed that epigenetic machineries could be shared by various loci to simultaneously co-regulate genes. My second postdoctoral work provided the first evidence that a MAP kinase, JNK, directly modifies chromatin at promoters of neuronal genes to induce their transcription during neurogenesis. This finding challenged the classical view that MAP kinases alter gene expression only via activating a downstream set of cytosolic proteins. In another study, we noticed that a specific isoform of Topoisomerase 2, Top2β, was expressed specifically in neurons. We next revealed that it binds promoters of neuronal differentiation genes to induce their expression during neurogenesis. This was a move away from the classical view as Topoisomerases were primarily known to relieve the torsional strain in DNA.
My early work was primarily centered on investigating epigenetic regulation of higher order chromatin conformation and its impact on embryonic development. When I began asking these questions, no labs in the world had previously investigated how chromatin looping contributes to genomic imprinting regulation and, consequently, to proper development. My studies revealed that CTCF controls imprinting at the Igf2-H19 locus by regulating its epigenetic state and higher-order chromatin structure. Interestingly, both CTCF binding and dependent chromatin higher order structures were maintained in mitotic chromatin. We also revealed networks of epigenetically regulated intra- and interchromosomal interactions and showed how these interactions influence epigenetic state of the interacting loci. Second part of my studies uncovered role for a specific non-coding RNA in the imprinted gene expression at the Kcnq1 locus and also showed how mutations in the XIST promoter influence CTCF binding and X chromosome inactivation.